CENE 486C : Bamboo Bridge Design

Bamboozle Engineering

Abdulaziz Almansur, Dominic Good, Steven Kohr, Mike Malisa

Purpose

- Design a Bamboo replacement bridge for the Flagstaff Urban Trail System (FUTS) to improve the aesthetics of the site area
- Construct a physical scale model that reflects design and architecture (not for loading)
- Analyze the feasibility and practicality of utilizing bamboo as a structural material

Figure 1: Existing Structure Facing South

Background - Project Location

Figure 2: Vicinity Map of Project Site, Google Maps

Background - Existing Structure

- Existing structure is a pedestrian bridge made of treated lumber
- Structure spans across a stream and joins two segments of the F.U.T.S.
- Proposed design must conform to these dimesions

Figure 3: Dimensions of Existing Structure

Exclusions

• Footings Design

Includes geotechnical engineering analysis or earthwork associated with manipulating the pre-existing concrete footings

Material Testing
 Due to availability of reliable theoretical values, mechanics of materials testing will be excluded

Figure 4: Pre-existing Footing at Project Site

Design Constraints and Criteria

<u>Constraints</u>

- Design structure using bamboo
- Weather resistant design
- Fixed span length and footing size

<u>Criteria</u>

- Material Strength/Stress Properties
- Durability (material warping)
- Aesthetics
- Cost

Figure 5: Laminated Bamboo Beams [8]

Design Alternatives

Figure 6: Design Alternative A

Figure 7: Design Alternative B

Figure 8: Design Alternative C

Final Design – Structural and Architectural

Figure 9: Bottom View of Structural Design

Table 1: Color Coded Member Cross-Section Dimensions

Member Attributes	B (in)	H (in)
Plank	11.25	1.5
Joist	1.5	7.25
Beam	1.5	11.25
Girder	14	48

Testing and Analysis - Loading

- Designed for 50 lb/ft² of live load
- Designed for 40 lb/ft² of snow load

Material Properties	
Density (lb/ft ³)	42
MOE (kips/in ²)	1319
Allowable Bending Stress (kips/in ²)	12.8

Table 2: Material Properties

Plank Loading	
Self-Weight (lb/ft)	4.921875
Live Load (lb/ft)	70.3125
Snow Load (lb/ft)	37.5
Total Distributed Load (lb/ft)	112.7344

Joist Loading	
Self-Weight (lb/ft)	3.171875
Live Load (lb/ft)	150
Snow Load (lb/ft)	80
Plank Dead Load (lb/ft)	10.5
Total Distributed Load (lb/ft)	243.6719

Beam Loading	
Self-Weight (lb/ft)	4.921875
Live Distributed Load (lb/ft)	974.6875
Total Distributed Load (lb/ft)	979.6094

Girder Loading	
Self-Weight (lb/ft)	237
Live Distributed Load (lb/ft)	487.7145
Total Distributed Load (lb/ft)	724.7145

Figure 10: Member Loading Analysis

Testing and Analysis – Results

Plank Analysis	
Max Moment (kip-in)	0.676406
Max Bending Stress (kips/in ²)	0.160333
Deflection (in)	0.009725

- Designed to maximum allowable bending stress
- Checked individual
 member deflections

Joist Analysis	
Max Moment (kip-in)	17.90988
Max Bending Stress (kips/in ²)	1.36294
Deflection (in)	0.209513

Legend	
Exceeds Requirements	
Meets Requirements	
Calculated Cells	
Input Cells	

1.1		
	Beam Analysis	
	Max Moment (kip-in)	72.0012
	Max Bending Stress (kips/in ²)	2.27559
	Deflection (in)	0.22543

Girder Analysis	
Max Moment (kip-in)	5372.406
Max Bending Stress (kips/in ²)	0.999332
Deflection (in)	2.340213

Deflec	Deflection Limits (in)		
Plan	k	0.0666667	
Jois	t	0.2333333	
Bear	n	0.2333333	
Girde	er	2.3433333	

Figure 11: Beam Stress and Deflection Analysis

Connections

Connection Design

- Z-MAX (Zinc) coating and epoxy paint for corrosion/weather resistance
- Spacers to be used for slab connections

Figure 12: Beam Hanger [1]

2x8 Joist Hanger					
E The second					
Allowable Load (kips)	Design Load (kips)				
1.68	0.85				

Figure 13: Joist Saddle Hanger (PFD28B) [1]

Decking Options

Figure 14: Grating used for Decking [11]

Figure 15: Planks used for Decking [8]

Table 3: Maximum Load on Lateral Bracing Structure

	Member		Load [k]
1	M20	max	.783
		min	.783
1	M21	max	.783
		min	.783

Construction Cost

Table 4: Material Price Comparison

Material Price Comparison									
Supplier	Lumber Material	Joist 2"x8"x8'	Quantity	Beam 2"x12"8'	Quantity	Girder 14"x48"x70.3'	Quantity	Total Cost	% Diff
Home Depot	Douglas Fir	\$8.26	40	\$13.55	10	\$8,973.75	2	\$18,413.41	2420/
LAMBOO	Bamboo	\$72.50	40	\$112.50	10	\$38,763.00	2	\$81,551.00	545%

Table 5: Total Construction Cost

Total Construction Costs						
Lamboo Materials	\$81,551.00					
Decking Materials	\$4,210.37					
Strucutral Connection Materials	\$1,040.31					
Lateral Bracing Connections	\$425.34					
Total Costs	\$87,227.02					

Figure 18 : Dimensional Lumber, Douglass Fir [10] Dom 14

Figure 17 : Laminated Bamboo [9]

Schedule - Executed

	\prec	\mathbf{S}	2017													4	.5 Finish St	ru (5.
project			Ulfeek 35)Ø/eek 36)ilieek 37)il/eek 38	Meek 39)lifeek 40)il/eek 41	Week 42)lifeek 43	Week 44	Week 45)il/eek 46) Week 47)ilieek 48)ii/eek 49	T,
Name	Begin date	End date	8/27/17	9/3/17	9/10/17	9/17/17	9/24/17	10/1/17	10/9/17	10/15/17	10/22/17	10/29/17	11/5/17	11/12/17	11/19/17	11/28/17	12/3/17	12
 1.0 Literature Review 	8/28/17	9/14/17		_										11/13/17				
 1.1 Existing Bridge Plans 	8/28/17	9/3/17																
 1.1.1 Current Bamboo Architectur 	e 9/1/17	9/3/17													Sc	hedule		
 1.1.2 Properties of Bamboo 	9/4/17	9/5/17													Adju	stments		
 1.2 Research Structures in U.S. 	9/6/17	9/11/17															┛└	
 1.3 Team Meeting 	9/12/17	9/14/17				+												
 2.0 Develop Preliminary Designs 	9/15/17	10/8/17																
 2.1 Design Three Alternatives 	9/15/17	9/20/17																
 2.2 Survey Public 	9/21/17	9/26/17																
 2.3 Preliminary Analysis of Design 	s 9/27/17	9/30/17																
 2.3.1 Design Selection 	10/1/17	10/6/17																
 2.3.2 Team Meeting 	10/7/17	10/7/17																
 2.3.3 Client Meeting 	10/8/17	10/8/17																
 3.0 Detailed Analysis 	10/9/17	11/13/17																
 3.1 AutoCAD Analysis 	10/9/17	10/22/17																
3.1.1 Plan and Profile View	10/15/17	10/22/17												_				
 3.2 RISA Analysis 	10/23/17	11/12/17																
3.2.1 Technical Advisor Meeting	11/13/17	11/13/17																
4.0 Construct Scale Model	11/14/17	12/1/17																
4.1 Bamboo Suppliers	11/14/17	11/15/17																
• 4.2 Purchase Materials	11/16/17	11/17/17																
 4.3 Team Meeting 	11/18/17	11/18/17																
4.4 Fabrication	11/19/17	11/30/17																
• 4.5 Finish Structural Model	12/1/17	12/1/17														•	,	
4.5.1 Client Meeting	12/1/17	12/1/17																
• 5.0 Dissemination	12/2/17	12/9/17																
5.1 Website Development	12/2/17	12/3/17																Ŧ
5.2 Develop Final Presentation	12/4/17	12/5/17																T
 5.3 Develop Final Report 	12/6/17	12/9/17																
5.4 Submit Final Report to Client	12/10/17	12/10/17																۲
Project Management	8/28/17	12/9/17																Ť

Figure 19: Executed Gantt Chart Schedule

Cost of Engineering Services

Table 6: Cost of Engineering Design Costs

	(COST ANALYSIS			
Position	Hourly Rate (USD)	Total Hours		Costs	
Senior Engineer	\$194.00	150	106	\$29,100.00	\$20,564.00
Project Engineer	\$67.00	191	157	\$12,797.00	\$10,519.00
Project Manager	\$90.00	165	141	\$14,850.00	\$12,690.00
ЕГ	\$50.00	211	172	\$10,550.00	\$8,600.00
		717	576	\$67,297.00	\$52,373.00
		% Diff	-20	% Diff	-22

Impacts of Design

Economic

- Bamboo production/manufacturing
- Decrease lumber market

Social

- Influencing architectural designs
- Encourages citizens of Flagstaff to use the FUTS

Environmental

- Bamboo grows naturally and quickly
- Decrease in steel/lumber production

Figure 20: Sports Hall in Thailand, [6]

Figure 21: Raw Bamboo Stalks, [7]

Scale Model

Figure 22: Scale Model Construction Finish

Table 7: Scale Model Cost

Scale Model Materials Costs						
Home Depot \$38.85						
Michaels	\$92.04					
Total Cost	\$130.89					

References

[1] Anon, (2017). [online] Available at:] https://www.strongtie.com/products/connectors/wood-construction-connectors/technical-notes/corrosion-info/materials-and-coatings [Accessed 30 Nov. 2017].

[2] "RISA-2D - Structural Engineering Software for Analysis & Design", Risa.com, 2017. [Online]. Available: https://risa.com/p_risa3d.html. [Accessed: 05- Feb- 2017]

[3] "SUPER-STRUT Threaded Rod, Carbon Steel,5/8-11x10 ft - 2HAR1 | H104 5/8x10 - Grainger". *Grainger.com*, 2017. [Online]. Available: https://www.grainger.com/product/2HAR1?cm_mmc=PPC:+Google+PLA&s_kwcid=AL!2966!3!166592851629!!!g!262041134080!&ef_id=WiBvwwAAAH80siVM:20171130211318:s&kwid=productads-adid^166592851629-device^c-plaid^262041134080-sku^2HAR1-adType^PLA. [Accessed: 30- Nov- 2017].

[4] E-rigging.com, 2017. [Online]. Available: https://www.e-rigging.com/assets/images/p/183/three-eighths-inch-X-6-inch-Hook-Hook-Turnbuckle-2.jpg. [Accessed: 30- Nov- 2017].

[5] Google.com. (2017). galvanized steel i bolt - Google Search. [online] Available at: https://www.google.com/search?rlz=1C1GGRV_enUS758US758&biw=1920&bih=984&tbm=isch&sa=1&ei=BGAgWp6yCueY0gLEtq_4DA&q=galvanized+steel+i+bolt&oq=galvanized+steel+i+bolt&gs_l=psy-

[6] designboom | architecture & design magazine. (2017). chiangmai life architects builds bamboo sports hall in thailand. [online] Available at: https://www.designboom.com/architecture/chiangmai-life-architects-bamboo-sports-hall-panyaden-international-school-thailand-08-09-2017/ [Accessed 30 Nov. 2017].

[7] Google.com. (2017). bamboo growing in a backyard - Google Search. [online] Available at: https://www.google.com/search?q=bamboo+growing+in+a+backyard&rlz=1C1GGRV_enUS758&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj8p6iUiefXAhUV12MKHbrlDegQ_AUICigB&biw=1920&bih=984#imgrc=utpB5rYVDdBB-M [Accessed 30 Nov. 2017].

[8] Materialicious.com. (2017). Laminated Bamboo Panels - Lamboo® Panel Layup Options. [online] Available at: http://materialicious.com/2010/05/laminated-bamboo-panels-lamboor-panel-layup-options-3.html [Accessed 14 Nov. 2017].

[9] Materialicious.com. (2017). Laminated Bamboo Panels - Lamboo® Panel Layup Options. [online] Available at: http://materialicious.com/2010/05/laminated-bamboo-panels-lamboor-panel-layup-options-3.html [Accessed 14 Nov. 2017].

[10] Google.com. (2017). douglas fir lumber - Google Search. [online] Available at:

https://www.google.com/search?q=douglas+fir+lumber&rlz=1C1GGRV_enUS758US758&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi8m76MkufXAhUGymMKHXuWAe4Q_AUICygC&biw=1920&bih=984#imgrc=-YZJLdLVMAxTcM: [Accessed 30 Nov. 2017].

[11] Mcnichols.com. (2017). Cite a Website - Cite This For Me. [online] Available at: http://www.mcnichols.com/images/mediabin/products/full/2705201012.gif [Accessed 14 Nov. 2017].

[12] "Bathroom Partitions | Bathroom Stalls & Hardware", Partitionsandstalls.com, 2017. [Online]. Available: https://www.partitionsandstalls.com/. [Accessed: 30- Nov- 2017].

[13] Schröder, Stéphane, and Stéphane Schröder. "Comparing Mechanical Properties Of Bamboo: Guadua Vs Moso". Guadua Bamboo. N.p., 2017. Web. 25 Apr. 2017.

[14] "Beam Bridges", Design-technology.org, 2017. [Online]. Available: http://www.design-technology.org/beambridges.htm. [Accessed: 29- Jan- 2017]

[15] Bamboo Facts. (n.d.). Retrieved February 20, 2017, from http://www.softschools.com/facts/plants/bamboo_facts/563/

[16] "Connections in bridges", Steelconstruction.info, 2017. [Online]. Available: http://www.steelconstruction.info/Connections_in_bridges#Bolted_connections. [Accessed: 29- Jan- 2017]

[17] "What is AutoCAD?", Study.com, 2017. [Online]. Available: http://study.com/what_is_auto_cad.html. [Accessed: 29- Jan- 2017]